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A stochastic model is introduced that is appropriate to describe surface-reaction systems. These reac-
tion systems are well suited for the description via master equations using their Markovian behavior. In
this representation an infinite chain of master equations for the distribution functions of the state of the
surface, of pairs of surface sites, etc., arises. This hierarchy is truncated by a superposition approxima-
tion. The resulting lattice equations are solved in a small region which contains all of the structure-
sensitive aspects and can be connected to continuous functions which represent the behavior of the sys-
tem for large distances from a reference point. In the present paper, we focus our interest on the devel-
opment of the formalism and its use when applied to the formation of NH;. The results obtained
(phase-transition points and densities of particles on the surface) are in agreement with Monte Carlo and
cellular-automata simulations. The stochastic model can easily be extended to other reaction systems
and is therefore an elegant alternative to the description via Monte Carlo and cellular-automata simula-

tions.

PACS number(s): 05.40.+j, 05.50.+q, 02.50.—r

I. INTRODUCTION

Catalytic reactions on solid surfaces are of great com-
plexity and they are thus inherently very difficult to deal
with. The detailed understanding of such reactions is
very important in applied research, but rarely has such a
detailed understanding been achieved neither from exper-
iment nor from theory. Theoretically there are three pos-
sible approaches, kinetic equations of the mean-field type,
computer simulations [Monte Carlo (MC) and cellular
automata (CA)], or stochastic models (master equations).
Kinetic equations are useful as a fitting procedure al-
though their basis—the homogeneous system —is in gen-
eral nonexistent. Thus they cannot deal with segregation
and island formation, which are frequently observed [1].
Computer simulations keep the fluctuations and correla-
tions and are thus able to deal with segregation effects
and the like, but so far the reaction systems are very
simplified ones containing only a few aspects of a real sys-
tem. The use of computer simulation for the study of
surface-reaction systems is limited because of the large
amount of computer time needed. MC simulations espe-
cially need so much computer time that complicated as-
pects (e.g., the dependence of the results on the distribu-
tion of surface defects) cannot be studied in practice. For
this reason we have developed CA models that run very
fast on parallel computers and enable us to study more
complex aspects of reaction systems. Examples of CA
models that have been studied in the past are NH, forma-
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tion [2], the question of the universality class [3], and
diffusion as well as diffusion-reaction of the A4 +B,
surface-reaction system [4]. But CA models are limited
to systems that are suited for the description by a purely
parallel ansatz.

Master equations present a very powerful and general
approach because they also maintain correlations, fluc-
tuations, and structural information. Their use for com-
plex reaction systems which take place on a lattice is only
limited by the fact that they can, up to now, only be
solved for very simple systems in one dimension analyti-
cally [5]. But it is possible to introduce sensible approxi-
mations and/or solve the equations numerically. For ex-
ample, certain aspects of the problem can be solved
analytically instead by a purely numerical approach and
one does not attempt to include structural effects and
fluctuations at large distances where by necessity these
have to die out. Many different approaches have been
developed to handle such systems. Some important refer-
ences are cited in Ref. [6].

In this paper we introduce a stochastic model for
surface-reaction systems which represents an elegant al-
ternative to the description via MC and CA simulations.
As an application we focus our interest on the formation
of NH,, which is described below [Egs. (1)-(5)]. It is ex-
pected that these stochastic systems are well suited for
the description via master equations using the Markovian
behavior of the systems. In such a representation an
infinite chain of master equations for the distribution
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functions of the state of the surface and of pairs of sur-
face sites (and so on) will arise. The chain of equations
cannot be solved analytically. To handle this problem
practically this hierarchy must be truncated at a certain
level. The resulting equations can be solved exactly in a
small region and can be connected to a mean-field solu-
tion for large distances from a reference point. This pro-
cedure is well suited for the description of surface-
reaction systems which includes the steps of adsorption,
diffusion, reaction, and desorption. The numerical part
needs only a very small amount of computer time com-
pared to MC or CA simulations. In spite of very simple
theoretical descriptions (for example, mean-field descrip-
tions for certain aspects) structural aspects of the systems
are explicitly taken into account. This leads to results
that are in agreement with computer simulations. But
the stochastic model avoids the main difficulty of com-
puter simulations: the tremendous amount of computer
time needed to obtain good statistics for the results.
Therefore more complex systems can be studied in detail,
which may eventually lead to a better understanding of
such systems. In the theoretical sections below we shall
deal with a disordered surface. This additional complica-
tion can be handled with the stochastic approach. This is
also a very important case in catalytic reactions.

The equations are written specifically for the NH; for-
mation as a fully general approach would be unwieldy.
The modification of the approach to other reactions can-
not be considered as trivial but can be done following the
outline below. Another application to a very complex re-
action system (CO-+O, on a Pt-Sn disordered catalyst)
will demonstrate this as well as the generality of the sto-
chastic ansatz [7].

The knowledge of the details of catalytic reaction sys-
tems is in general of great industrial importance. Much
effort in particular has been undertaken to understand
the reaction mechanism of the NHj; synthesis. But even
today this system is not well understood because it turns
out to be very complex. With the help of modern surface
spectroscopy methods some aspects of the reaction mech-
anism [8] and some details of the role of structural and
energetic promoters on the surface have been clarified but
no consensus has been reached on several important
points. The NH; synthesis is industrially performed with
a promoted iron catalyst, where the promoters are
structural ones such as Al,O; and electronic ones such as
K,O. In the laboratory, single crystals of iron, tungsten,
or rhenium are used. H, adsorbs dissociatively with a
large sticking coefficient and N, adsorbs molecularly with
an activation barrier towards dissociation into atoms
which together lead to a low sticking coefficient of about
1077, The dissociative adsorption is the rate-limiting
step. The sticking coefficient is defined as the probability
that a molecule impinging on the surface is adsorbed (dis-
sociatively). The reaction occurs between adsorbed
atoms via the steps N+H—NH, NH+H—->NH,, and,
finally, NH,+H—NH,, which desorbs after formation.
Computer simulations are another tool which may be
helpful for understanding certain aspects of the behavior
of this system. Complex kinetic and thermodynamic cal-

culations have been introduced by Stoltze and Norskov
[9] who take many aspects of the reaction system into ac-
count. Their results are in very good agreement with ex-
perimental observations of the reaction rate. Due to the
use of many experimental data their model becomes in-
volved and one cannot understand the evolution of the
reaction system in detail.

We have introduced a CA model for NH; formation
[2]. This model accounts only for a few aspects of the re-
action system. In our simulation the surface is represent-
ed as a two-dimensional square lattice with periodic
boundary conditions. A gas phase containing N, and H,
with the mole fraction of yy and yy =1—yy, respective-
ly, sits above this surface. Because the adsorption of H,
is dissociative a H, molecule requires two adjacent vacant
sites. The adsorption rule for the N, molecule is more
difficult to describe because experiments show that the
sticking coefficient of N, is unusually small (10~7). The
adsorption probability can be increased by high-energy
impact of N, on the surface. This process is interpreted
as tunneling through the barrier to dissociation [10].
Another possibility to increase the adsorption probability
is via electronic promoters (K,0). It is believed that this
promoter, which is enriched on the surface, leads to a
larger binding energy of molecular N, via an increased
metal 7-electron backbonding. Connected with this is a
lowering of the activation energy for dissociation [11].
Because of the presence of promoters we introduce two
different adsorption sites: activated ones, S, and normal
ones, S,. We suppose that the dissociative adsorption of
N, occurs on a pair of neighboring vacant sites from
which at least one must be activated (S-S ,), where S, ,
means a surface site of type 1 (activated) or 2 (nonactivat-
ed). It is unnecessary to require two neighboring activat-
ed sites for the dissociative adsorption of N,. The effect
of the promotor is not a strictly localized one but also
influences the neighborhood. At the typical concentra-
tions of K™ it is rather unlikely that two neighbor sites
are both activated. Thus our rules take into account the
fact that an activated site also influences the energetic
behavior of the neighboring sites. The dissociative ad-
sorption of H, can take place on every pair of free sites
S,-S1, S,-S, or §,-S,. The concentration of S, is a mea-
sure for the concentration of K on the surface. If a N
atom is a nearest neighbor of a H atom reaction occurs to
NH-S,,. Via further reaction steps the product mole-
cule NH; is formed which desorbs immediately after for-
mation. We neglect recombination reactions. Therefore
the basic steps are

N,(gas)+S,—S§,,>N—8§,+N—5,,, (1)
Hy(gas)+S,,—S,,—2H—-S,,, (2)
N—-S,,+H—S,,>HN—S,,+S5,,, (3)
HN-S,,+H—=S,,>H,N—S,,+S,,, 4)
H,N—S,,+H—S,,—>NH;(gas)+2S, , . (5)

We neglected in our model the back reactions to simplify
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the already quite complicated process. In some of the
steps this does not correspond to the reality, with the ex-
ception of the last step, because NH; is removed from the
surface and the reactor. We do not believe that the in-
clusion of the back reactions will alter significantly the
conclusions of the present very simplified reaction model
except via a reduced reaction rate. The surface coverages
should remain essentially unchanged and they are the
prominent information from our model. Further on the
removal of NH; introduces a “drag” on the reaction pro-
cess in the direction of smaller importance of the back re-
actions. As a result of our model we found for the case
where all sites are activated a first-order kinetic phase
transition for the coverages as a function of yy. For
YN <»1=0.262 the surface is nearly completely covered
by H and nearly no reaction takes place. With decreasing
YN, the coverage of H (Oy) increases to unity. For the
value y =0 itself only H, molecules adsorb and no reac-
tion event occurs. Therefore ©y=0.88, which is the
maximum coverage for the adsorption of dimers. For the
case that not all sites are activated a change in the char-
acter of the phase transition from first to second order is
observed.

The paper is structured as follows: In Sec. II we intro-
duce the stochastic model. The representation of the
state of the lattice sites (activated or unactivated) and
their occupation with particles are introduced. The dis-
tribution functions are defined in Sec. III. The resulting
lattice equations which represent the temporal evolution
of the distribution functions are represented in Sec. IV.
The superposition approximation which is used is dis-
cussed in Sec. V. Section VI deals with the numerical
procedure which we use to solve the lattice equations.
The results for the formation of NH; are presented in
Sec. VII. The discussion of the results and the compar-
ison to an earlier presented CA model for the NH; for-
mation [2] takes place in Sec. VIII.

II. STOCHASTIC MODEL

A. Surface

In our simulation we use a square lattice (but this is not
a necessary condition; different lattices pose no problem).

P(0,0)=(1—S)*+T>0
P(0,1)=S(1—8)—TI'>0 |=—
P(1,1)=8%+T>0

One obtains as limiting cases:

I'=8(1—8)=P(0,1)=0= no a-u pairs exist at the
distance |/ —m)].

For $<0.5,T’=—S%=—P(1,1)=0=— no a-a pairs ex-
ist at the distance |/ —m]|.

For §>0.5, I'=—(1—S)>=P(0,0)=0= no u-u
pairs exist at the distance |/ —m)|.

Each lattice site is given a lattice vector I. The state of
the site I (activated or unactivated) is represented by the
lattice variable o; with

0 if the site is unactivated (u)

917 |1 if the site is activated (a) . ©)

We define S=(o,) as the mean value of the activity of
the catalyst and this is independent of /. Next we intro-
duce the correlation of the activated and unactivated
sites:

G(l—m)={0,0,,) . (7

In the asymptotic limit where the cells / and m are far
away from each other we obtain

lim G(I—m)=S?%, (8)

[I—m|— o

which expresses the fact that the correlation between the
sites vanishes. For finite distances we define G as

G(I—m)=S*4+T(I—m) . 9

For I'=0 we get an uncorrelated distribution of activated
and unactivated sites. With the help of these definitions
we are able to express the disorder of the surface states by
assigning each cell a probability

P(o;)=(1—8)+0,(285—1) (10)
and for a pair of cells
P(o,,0, )=[(1—S)*+T]

+(o,+0,)[(28S—1)(1—S)—2T]

+0,0,[(28—1)*+4r'] . (11)

All probabilities must be positive, which means:

—S?2<T'<S(1—S) for S<0.5
—(1—8)?<TI'<S(1—S) for $>0.5.

(12)

T" as a function of the distance must fulfill these condi-
tions.

B. Particles

We introduce a variable for the particles
Y €{0,H,N, 4,B}, where O represents a vacant site, A4
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represents a NH particle and B a NH, particle. The state
of a lattice point ), consists of the state of the catalyst
(activated or unactivated) and its coverage with a parti-
cle. This leads to the following possible states:

xX;=1{v;0;}=0u,0a,Hu,Ha, ...,Bu,Ba . (13)

The H and N particles are created on the surface by ad-
sorption out of the gas phase with the rates

pu,~yu and py=2py, =2y (14)
for the H particles and
pn,=1—yy and py=2(1—yy) (15)

for the N particles. yy and yy are the mole fraction of
H, and N, in the gas phase with yy+yx=1. By these
adsorption steps pairs of HH and NN particles are creat-
ed because of the dissociative character of the adsorption.
For the adsorption of N, at least one of the lattice sites
must be activated: o;+o0,, >0. This condition appears
implicitly very often in the following but we do not write
it explicitly.

At normal temperatures H atoms are very mobile on
metal surfaces. We take this into account by the possibil-
ity of diffusion steps for the H atoms. A H atom jumps
with rate D onto nearest-neighbor sites on the lattice. If
this site is occupied by N reaction occurs and an A parti-
cle (NH particle) is formed. The same holds if the site is
occupied by 4 or B (NH,), where the products B or
NH;=0 are formed, respectively. NH; desorbs immedi-
ately from the surface and an empty site is formed. This
type of reaction system is called a diffusion-limited reac-
tion system. It is important to note that all the reaction
steps discussed above (with the exception of the N, ad-
sorption) are independent of o; and o,,. In the following
we normalize the adsorption and the diffusion rate to the
coordination number z of the lattice (z =4 for the square
lattice): pyy—pnu/zand D—D /z.

III. DISTRIBUTION FUNCTIONS

Next we want to define the distribution function p'*’ of
order k for the state of the surface. For k =1 we get

pV=pP(x)=pVy,0,)=C,=C(1) . (16)
Cs,CG,...,Cg are the lattice densities which are in-
dependent of I because of the translatory invariance of
the lattice. One of the densities depends on the others be-
cause of the sum rule

Spl=1. (17)
X

The distribution functions of second order (k=2)

(2) =

P pm(xl)(m) depends on the distance (I-m). As an
asymptotic case one obtains
’ lir‘n pP=pV(x)pV(x,,) - (18)
—mj|— o

We define the correlation functions as follows:

1703
) )
Fyyp (1—m)=—b XX (19)
1%m P x e (X )
Because of the sum rule
> PP =pM ) (20)

Xm

10 of the total 55 correlation functions are dependent
variables. The correlation functions are normalized via
the 10 conditions

S CyFpl—m)=1. (21)
<

Distribution functions of third order p® (k=3) will be
approximated by the superposition approximation of
Kirkwood [12]:

PP (X1 XmXn)=Cy,Cy Cy Fy, (I—m)

XF (m——n)Fanl(n—l) . (22)

XmXn
Higher-order distribution functions (k>3) will be
neglected in our model because they can hardly be han-
dled and they should not be as important for the present
and similar reactions as the lower-order distribution
functions.

IV. EXACT LATTICE EQUATIONS

With the help of the definitions made above we are able
to write the equations for the temporal evolution of the
distribution functions.

A. One-point probabilities

The general form of the equation of motion for the
one-point probabilities is

9 (1)

o1 X1)=

d
atX] (23)

with X € {0,H,N, 4,B}. The brackets on the right-hand
side represent the state at site /. In the following we use
the definition

(24)

1 if I and m are nearest neighbors
%,m ™ |0 otherwise .

The temporal evolution of the B density is given by

() : .
5,C8=D |C5 3 CHF 4omo )= C§ 3 CiiFpomo V) | -
o’ o’
(25)
F_,.(1) is the correlation function for nearest neighbors.

The other densities are given by the following equations
of motion. For the A4 density:
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3 , For the N density:
3,C5=D |C§ 3, CFron (1) )
o ECU =PNCS 3 C§ Fooo (1) —DCY 3, CiFyono (1) -
o’ o’
~C9 S CHF gouio 1) ] - 6) @7
o’ For the H density:
|
d . .
57 CR=PuCY 3, C§ Fogoy (V+DCE 3, CiiFogny(1)
o’ o’
—DCH |3 C8 Frigor D+ S C&Friono (1)+ 3, €4 Fyty 4 (1)+ 3, CF Fyaypor(1) J . 28)
o’ o’ o’ o’
For the O density:
a
a3 C3=-—pruCq Eco Foo00(1)—pnCE ECHFOOHU(I)
_ch 2 Cg'FH(TOU'( 1 )+2 CgIIFHaNU’( 1 )+2 CZ,FHUAUI( 1 )+2 Cg’FH(TBU'(l) ]
o’ o’ o’ o’
+DC} 3, C{iFpou,(1)=DCF 3, CfiFogn, (1) (29)
a’ a’
[
B. Two-point probabilities {HH}=py(00) , {HN}=—D(HN),
The general form of the two-point probabilities reads {HA}=—D(HA), (35)
in the diagrammatic description:
{HB}=—D(HB) ,
X -y
PP X )= ] ol (30) {00}=D(HB +BH)—py(00)—py(00) , (36)
with X,YE{0,H,N, A,B}. The right-hand side denotes {OH}=D(HO)—~D(OH) , {ON}=0, (37)
the two-point probabilities with species X at site / and Y {04}=D(HN), {OB}=D(HA). (38)

at site m. The hyphen here and below denotes that there
is a correlation between X and Y. Differentiation leads to

Ay

2X Y+ X))

9
at (XIXm)

a,)

T (XY . 31)

The first term on the right-hand side describes the change
of the state of point / which does not depend on m. The
second term expresses the analogous quantity for point
m. If / and m are nearest neighbors, the change of the
states of / and m depend on each other. This fact is taken
into account by the third term. The temporal evolution
of a state of a cell {3X /3dt} are given in the preceding
section.
{XY} takes the following values:

{XY}=0 for X,Y=A,B , (32)
{(NY}=0 for Y=A4,B, (33)
{NN}=py(00) for c+0'>0, (34)

The three-point probabilities will be solved by using the
Kirkwood approximation:

1
7 2 P WX )= Cy, C, Fry, (1= m)

X2 Cx,,ﬁx,,x,,,(l—m)Fx,xn(l) ’
(39)
with
s o1
Frp(D=" 3 ay Fye(n) , (40)

which is the mean value over the lattice. Here we use the
additional definition

Fupp(0)=0 . (41)

F,, (1) can be calculated via the two-point probabilities
using the ansatz:

DX Xm)=Cy,Cy Fy, (I—m). (42)

For example, let us calculate F 4, g(1):



48 STOCHASTIC MODEL FOR COMPLEX SURFACE-REACTION . .. 1705
Sr = o P
3 400’ 1) ,(I)E*CH Footno (DF g wp, (1)
*
+ N3 Ch Fyoe o (DF, o (1)=F 4,p,(1)
X DZC%*FHO*A l)ﬁHU*B
*
g
_a_ a ica’
4D CEF, ay (VP . (-0 8
2 H Y Ho*Bo’ Ho* 40 ce? Ca’ 3)
o* 4 B
The first term represents the creation of 4 from N, the K} 3
second the creation of B from A, and the third and a3 D(x,)# EOSA Epm()(;xm) , 47)
fourth the annihilation of 4 and B, respectively. The last

two terms arise during the transition from p'% to F.
V. SUPERPOSITION APPROXIMATION

The use of the superposition approximation leads to a
problem that is typical for lattice systems: the choice of
the dependent correlation functions. From the normali-
zation equation (21) the dependent variables can be writ-

ten as
/ Co.

F xx*(l )=
Many possibilities exist for choosing some correlation
functions as dependent ones because the superposition
approximation is a multiplicative approximation which
contradicts the sum rule

1— 2 Cx xx (44)

X (#=x*

3oV X e Xm ) =P P XX ) - (45)

Xm

Therefore any chosen definition leads to a different form
of the resulting equations. Some of these forms may
cause numerical difficulties. Therefore the question arises
how such cases can be avoided. To this end we write the
condition of Eq. (2) in the dynamical form

9 iy,)=
Bt x= Ea,p (X1Xm)- (46)

If we choose all F,,.(I) as independent the use of the su-
perposition approximation leads to an error

|

OSA {Ez: (E\,———Z )} Z(Xy)gczsz(l—m)ﬁX (I-—m),

m

where

ECZFXZ(I sz(l_ )/(1

—a;,,/2)=1/W(X,Y)#1 .

where Og, indicates the superposition approximation.
The terms which lead to this error are of the form

—

1 m

(48)

We use the above diagrammatic notation to avoid very
cumbersome and lengthy mathematical expressions,
which tend to veil the essentials. A square in the diagram
means a summation over nearest neighbors. In the mid-
dle of the square the central site / with the particle occu-
pying it is shown. The summation runs over sites k
which are nearest neighbors of site / and which are occu-
pied with a particle of the type specified by the symbol in
the upper right corner of the square. At the same time
there is a particle (Z) at site m. Z is again the same set of
states of a site as X and Y. Summation over all Z leads to
the exact condition

> ([E—]Y———z ) = [1—0‘—’"'— (XY),  (49)
z
1 m
with
(XY)=p?(XY) (50)

for nearest neighbors.
But the superposition approximation leads to a
different value,

(51)

(52)

To avoid this error we use in the numerical procedure the superposition approximation with the correction factor

W(X,Y):
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OARS> @Y——Z —(XY)S CyFyz(I—m)Fy,(I—m)W(X,Y) .
A >

(53)

With this correction factor we can now choose all correlation functions as independent variables. This avoids the nu-

merical difficulties described above.

VI. METHOD OF SOLUTION

The main problem is connected with the solution of an
infinite system of nonlinear differential equations for a
chosen type of lattice. To solve this problem in practice
the following approximation is used. A threshold value
mg is introduced. For m <m, the lattice equations are
solved for all nonequivalent points of the lattice (here we
use my,=35). This first area determines several coordina-
tion spheres in which the lattice aspect of the problem is
important. In the second area all properties change
quasicontinuously with the distance |m|. Therefore we
can use a continuum approximation by introduction of
the coordinates r=|m| and substituting the correlation
function F(m) by the radial one F(r). By this substitu-
tion the equations transform into nonlinear equations in
partial derivatives. As the left (or inner) boundary condi-
tion (circumference of the circle with radius m) the solu-
tion within in the first area at |m|=m, is used. Because
of the weakness of the correlation we can use F(©)=1 as
the right (or external) boundary condition. More details
of the method of solution are given in Ref. [13].

In our calculation we choose as the initial condition an
empty surface C7(¢t=0)=0 for Y€ {H,N, 4,B}. The
activated sites of the catalyst are distributed with
C§(0)=S and C§(0)=1—S, where S is the mean activity
of the surface. The correlation functions are given by

Foo0(1)=P(0,0)/(1—S)?
=1+ /(1-8),
Fooo1 (1)=P(0,1)/[S(1—S)] (54)
=1-T()/[S(1-9)],
Foi01(1)=P(1,1)/8*=1+T(1)/S?

where P(o,0') is defined in Sec. II.

VII. RESULTS

A. System behavior for S =1

First we want to study the case in which all surface
sites are activated (S=1). This means that a N, mole-
cule can adsorb at every pair of free surface sites. Figure
1 represents the behavior of the surface coverages ©; of
the various chemical species i as a function of the mole
fraction of N, in the gas phase, yy, for the case S =1 and
D =1. The most prominent feature in this figure is a
kinetic phase transition of second order at y =y, =<0.21.

For yy <y, the surface is nearly completely covered by
H and nearly no reaction takes place. For yy=>y,, Oy
drops to zero and the coverages of N, NH, and NH, in-
crease. For yy—1, Oy increases to 0.88, which is the
maximum coverage for the adsorption of dimers. The
coverages of NH and NH, increase rapidly for yy >y,
because the composition is nearly stoichiometric on the
surface. For larger yy these coverages decrease because
there are not enough adsorbed H atoms on the surface for
their formation (the coverage of N atoms increases). It
must be noted that the value of y, is very close to the
stoichiometric ratio of 0.25 but not identical with it. This
difference arises from the small diffusion rate of the H
atoms. Therefore the system is not well stirred and ad-
sorbate clusters are formed. This invalidates a descrip-
tion by a mean-field model. The reaction rate is in all
cases similar between the stochastic and the CA model.
It rises steeply at the phase-transition point and levels off
for larger values of yy. It is a nonlinear function of yy.
We do not represent it in the figures.

Figure 2 shows similar data of the surface coverages as
in Fig. 1 but now we use a larger diffusion rate of D =10.
It can be seen that the value of y, is shifted to a larger
value of yN (y;=0.23), which is closer to the
stoichiometric ratio of 0.25. Also, the kinetic phase tran-
sition sharpens and it is now nearly of first order. This
can easily be understood from the fact that the fast-
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FIG. 1. Phase diagram for the case S =1and D =1.
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FIG. 2. Phase diagram for the case S =1 and D =10.

moving H atoms react with N, NH, and NH, molecules
at the border of the adsorbate clusters. Therefore this
system is more of mean-field type. The coverages of NH
and NH, are a little bit smaller compared to the case of
D =1, which shows the more reactive character of the
fast-moving H atoms. Just above y; the coverage of N is
a little bit larger than for the case D =1. This arises
from the fact that at this point more vacant pairs of sur-
face sites are present which enlarge the probability of the
dissociative adsorption of N,.

As an example of a very low diffusion rate we want to
study the system behavior for D =0. 1, which is shown in
Fig. 3. For this case the phase transition at y; vanishes.
Because of the very small reactivity of the H atoms large
cluster structures of particles can be formed. This allows
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FIG. 3. Phase diagram for the case S =1 and D=0.1.

the simultaneous appearance of H and N atoms on the
surface.

B. System behavior for S =1

Next we want to study the more realistic case in which
not all surface sites are activated. This means a reduction
of the adsorption probability of the N, molecules. In the
following we assume the case of S =1.

In Fig. 4 the coverages for D =1 are shown. The
kinetic phase transition is of second order and the value
of y, is shifted to larger values of yy compared to the
analogous case above. Over the whole parameter range
of yn, Oy is significantly larger than 0.2. The concentra-
tions of N, NH, and NH, increase with increasing y but
they are smaller than 0.1. This behavior can easily be un-
derstood from the fact that N, molecules can only adsorb
on vacant nearest-neighbor pairs from which at least one
site must be activated. During the reaction, many ac-
tivated sites will be blocked via occupation with NH and
NH, because reaction occurs by the jump process of H
atoms to sites which are covered by N, NH, and NH,.
After the reaction the product covers in many cases an
activated site. Another process for the blocking of ac-
tivated sites is the adsorption process of H,, which is very
important for small values of y.

If we enlarge the diffusion rate of the H atoms to
D =10 (shown in Fig. 5) the value of the phase-transition
point y,; and the coverages of N, NH, and NH, are nearly
unaffected by this change. Only the concentration of H
atoms drops more rapidly for yy>y,;. This behavior
shows the increased reactivity of H atoms which are now
more mobile. The coverage of the other particles depend
only on the concentration of the activated sites of the sur-
face and not on the reactivity of the H atoms.
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C. Correlation function

We have also studied the pair-correlation functions of
the adsorbed particles which contain a variety of infor-
mation on the adsorbate structure. In a previously intro-
duced model for the oxidation of CO we have found large
0-0 and CO-CO correlations, which cause the appear-
ance of oscillations [13]. In contrast to the CO oxidation
model a large number (55) of different pair correlations
appear in the present reaction model. We observed that
all of these are very small with the exception of H-H and
N-N correlations between nearest-neighbor sites. This
correlation is the result of the dissociative adsorption of
the molecules. But within a very short distance (three or
four sites) the correlation vanishes. This is clear because
of the occurrence of many different pairs which result
from the large number of different particles and the state
of the surface. In the present model large N cluster can-
not appear because of the formation of NH and NH, par-
ticles during the reaction which immediately breaks off N
clusters. The H atoms are distributed randomly over the
surface because of their mobility and their large reactivi-
ty. For § <1 the additional effect of randomly distribut-
ed active surface sites leads to a random distribution of
N, adsorption events. Therefore it is clear that in this
model large correlations cannot appear. The facts given
here present a justification for the statement made follow-
ing Eq. (22).

VIII. DISCUSSION

In this paper we have introduced a stochastic model
for heterogeneously catalyzed reactions and applied it to
the formation of NH;. We take into account the oc-
currence of activated sites for the adsorption of N,. For

this system we have previously introduced a CA [2]. The
reaction step in the CA model is defined in another way
than in the model described here. In the CA model, reac-
tion takes place if two reactive particles are nearest
neighbors on the surface. The effect of the diffusion of
the H atoms was not included which is in some respect
unrealistic. Differences which occur between these two
different models are consequences which arise due to the
reaction and diffusion events. In the stochastic model re-
action occurs by a hopping process of H atoms to sites
which are occupied by particles which can react with H
atoms. The product is formed on the site to which the H
atom hops. This means that in this case the probability
to block an activated site is larger in the stochastical
model than in the CA model in which the reaction prod-
uct occupies one of the two sites. This site will randomly
be selected. Therefore the probability of the blocking of
activated sites is reduced. This results in a larger cover-
age of N atoms for the case S < 1.

The reaction models are different in the CA and the
stochastic approach because of the so-far unsurmount-
able difficulties with the nearest-neighbor reaction in the
stochastic equations. A detailed investigation of a simple
model of the oxidation of CO [13], where diffusion was
included in both approaches, lead to the conclusion that
the results of the two models are quite close. The CO
poisoning of the lattice is of the same order and occurs at
the same point. Also, for the oxygen poisoning, the order
of the phase transition agrees in the two approaches, but
the transition is shifted to a somewhat lower value. But
on the whole the agreement is very close. We thus can
expect that also in the present model there will be only
small changes due to the introduction of the different re-
action rule.

For the case S =1 and D =1 the results of the stochas-
tic model are in good agreement with the CA model
(1=0.262). This is understandable because the different
definition of the reaction which leads to a difference in
the blocking of activated sites cannot play a role because
all sites are activated. The diffusion rate D =10 leads
nearly to the same reactivity as if we define the reaction
between nearest-neighbor particles. If the diffusion rate
is lowered (D =0.1) the behavior of the system changes
completely because of the decrease of the reaction proba-
bility. This leads to the disappearance of the kinetic
phase transition at y, because different types of particles
may reside on the surface as nearest neighbors without
reaction, a case which does not occur in the CA ap-
proach.

The results obtained from the CA model for § =1 are
in quite good agreement with the results obtained from
the stochastic ansatz for D =1 and 10. Then value of the
phase transition point y, is found to be y, =0.4 in both
models. In the stochastic model the density of adsorbed
N atoms is smaller compared to the CA model because of
the blocking effect of activated sites which arises from the
different reaction mechanism.

We have also performed calculations for higher
diffusion rates (D =100) and for the triangular lattice
(with coordination number z =6). The qualitative
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behavior is in complete agreement with the calculation
presented here. For the case S =1 the increase of the
diffusion rate or the change of the lattice leads to a very
small shift of the phase transition point y; to higher
values of yy. This trend is clear because the reactivity of
the H atoms is increased by the larger mobility. For
S <1 nearly no effect can be observed, which means that
the system behavior is mainly dominated by the number
of activated sites. The correlation of the adsorbed parti-
cles are rather small as expected for S < 1.

IX. CONCLUSIONS

The results obtained with this stochastic model show
that surface-reaction systems are well suited for a
description via master equations. Because this infinite
chain of equations cannot be solved analytically, numeri-
cal methods must be used for solving it. In a previous pa-
per we studied the catalytic oxidation of CO over a metal
surface with the help of a similar stochastic model. The
results are in good agreement with MC and CA simula-

tions. Here we have introduced a much more complex
system, which takes the state of catalyst sites and the
diffusion of H atoms explicitly into account. Due to this
complicated model MC and in some respect also CA
simulations cannot be used to study this system in detail
because of the tremendous amount of required computer
time. The stochastic ansatz offers the possibility to study
very complex systems, including the distribution of spe-
cial surface sites and correlated initial conditions for the
surface and the coverages of particles. This model can
easily be extended to more realistic models by introduc-
ing more aspects of the reaction mechanism. Moreover,
other systems can be represented by this ansatz. There-
fore this stochastic model represents an elegant alterna-
tive to the simulation of surface reaction systems via MC
or CA simulations.
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